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Summary

In this paper, we propose a goodness-of-fit test of normality for the innovations of
an ARMA(p, q) model with known mean or trend. The test is based on the data
driven smooth test approach and is simple to perform. An extensive simulation
study is conducted to study the behavior of the test for moderate sample sizes. It
is found that our approach is generally more powerful than existing tests while
holding its level throughout most of the parameter space and thus, can be recom-
mended. This meshes with theoretical results showing the superiority of the data
driven smooth test approach in related contexts.
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1 Introduction

Let (Yt, t ∈ Z) be a stationary process. In this paper, we concentrate on the case
whereE(Yt) is known or has been estimated using information outside of the data
set. Thus, without loss of generality, we setE(Yt) = 0. Consider the framework
where (Yt, t ∈ Z) obeys the causal and invertible finite order ARMA(p, q) model

Yt −ϕTY
(p)
t−1 = θTε

(q)
t−1 + εt (1.1)

where (εt, t ∈ Z) is an innovation process of random variables with mean0 and
autocovarianceE(εtεt+h) = σ2 < ∞ (unknown) ifh = 0 and0 otherwise and
where

ϕ =

 ϕ1
...
ϕp

 , θ =

 θ1
...
θq

 , Y
(p)
t−1 =

 Yt−1
...

Yt−p

 , ε
(q)
t−1 =

 εt−1
...

εt−q

 .
A sample{Y 1, ..., YT} is observed and model (1.1) is fitted by standard meth-
ods, e.g. the unconditional Gaussian maximum likelihood approach (see Brock-

well & Davis (1991), p. 256-257), yielding the estimatorβ̂ = (ϕ̂T, θ̂
T

, σ̂)T of
β = (ϕT,θT, σ)T.

If it can be safely assumed that the (εt, t ∈ Z) generating theYt’s is of a given
distributional type, in particular independent identically distributed (i.i.d.) normal
(Gaussian) random variables, then better inference can be drawn from the fitted
model. For example, such an assumption is helpful in obtaining accurate confi-
dence or tolerance bounds for a predictedYT+h. Moreover, under this Gaussian
assumption,̂β is asymptotically efficient. Thus it is important to be able to test a
null hypothesis of the form

H0 : theεt´s arei.i.d. ∼ N(0, σ2). (1.2)

As pointed out by Pierce & Gray (1985) and Brockett et al. (1988), other rea-
sons may motivate a test of (1.2). One such reason is to check the validity of
the structural part of (1.1). Indeed, the process of fitting a model to data often
reduces to that of finding the model whose residuals behave most like a sample
of i.i.d. Gaussian variables. In this context, rejection of (1.2) may indicate lack-
of-fit of the entertained ARMA model. We will not elaborate further here on this
possibility and assume, in the sequel, that model (1.1) is not underspecified. Note
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however that there exist specific tests for detecting lack-of-fit (for a recent review,
see Koul & Stute (1999).

For the problem of testing (1.2), the few tests available fall roughly into two
groups. Tests in the first group use the fact that for the ARMA (p, q) models con-
sidered here, normality of theYt’s induces normality of theεt’s and vice-versa.
Thus a test of the hypothesis that a process (Yt, t ∈ Z) is Gaussian (Lomnicki
(1961); Hinich (1982); Epps (1987)) can serve for problem (1.2). This presents
the advantage of not requiring the values ofp and q. But Gasser (1975) and
Granger (1976) have shown, and Lutkepohl & Schneider (1989) have confirmed
by simulation, that this approach may lose much power. This is because the cen-
tral limit theorem forces theYt’s to be close to normality even when (1.2) is false.
Moreover, the adaptation of standard normality tests to dependent data is not an
easy task. A small simulation study by Heuts & Rens (1986) has shown that, be-
cause of the serial correlation between theYt’s, the finite null behavior of standard
normality tests based on the empirical distribution function (EDF) of the Yt’s is
different from what is obtained underi.i.d. data. The same problem appears for
tests based on the third and fourth moments ofYt (see Lomnicki (1961); Lutke-
pohl & Schneider (1989)) or Pearson´s chi-square (Moore (1982)).

It thus appears better, when there are reasons to believe that a given ARMA(p,
q) model holds, to "inverse filter" the data and compute the residualsε̂t after fit-
ting model (1.1). These can then be injected in some test for normality. Tests in
the second group are based on this idea and some examples are listed in Hipel
& McLeod (1994). However, these and other authors use such tests in conjunc-
tion with critical values fori.i.d. data. Since the residuals of an ARMA model
are dependent, the null distribution of standard test statistics may be affected and
critical values fori.i.d. data may no longer be valid. It turns out that for AR
models, there is theoretical proof that this dependence disturbs only slightly the
critical values, at least whenT is large. For an AR(p) model with unknownE(Yt),
Pierce & Gray (1985) has shown that the asymptotic null distribution of any test
statistic based on the EDF of the residuals coincides with that of the same statistic
for i.i.d. data with mean and variance unknown. Thus one can drop the residuals
from an AR(p) model into any of the standard EDF-based tests (Kolmogorov-
Smirnov, Anderson-Darling) and ifT is large, use the critical values given, for
example, in Chapter 4 of D’Agostino & Stephens (1986), to obtain an asymptoti-
cally valid test strategy. In the same vein, Lee & Na (2002) have recently adapted
the Bickel-Rosenblatt test to this AR setting. Beiser (1985) has found that for the
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AR(1) model, tests based on the skewness or kurtosis coefficients of the residuals
(D’Agostino & Stephens (1986), p. 408) in conjunction with the critical points
derived fori.i.d. data produce valid levels ifT is large and the AR-parameter is
not too close to its boundary. This has been confirmed by Lutkepohl & Schneider
(1989). See also Anděl (1997).

For the general ARMA model, much less information is available. Ojeda et al.
(1997) show that tests based on quadratic forms in differences between sample
moments and expected values of certain non-linear functions of the sample have
the same asymptotic distribution under the ARMA model than underi.i.d. data.
This suggests that a generalization of Pierce & Gray (1985) theorem to ARMA
models could hold although, to our knowledge, no proof of this has been pub-
lished. Otherwise, the practice recommended in many textbooks (see for exam-
ple, Brockwell & Davis (1991), p. 314; Hipel & McLeod (1994), p. 241) is to use
standard normality tests in conjunction with critical values fori.i.d. data.

In this paper, we develop some tests specifically designed for problem (1.2) in
the ARMA(p, q) context. Our approach is based on the smooth test paradigm
introduced by Neyman (1937) and improved by the data driven technology intro-
duced by Ledwina (1994) to select the best order for the test. This has been shown
in thei.i.d. case to offer many advantages, both theoretically and empirically, over
other approaches. In particular, the test statistic we recommend for problem (1.2)
is easy to compute with an asymptoticχ2 distribution that can be corrected in
finite samples to yield close to nominal levels. Moreover, as a byproduct of the
procedure, diagnostic information is available that helps in understanding which
aspects of the null hypothesis are not supported by the data.

Note that we concentrate here on the development of valid tests along this paradigm
and do not dwell into their theoretical properties (i.e. local power and asymptotic
efficiency). We also stress that the tests proposed here are valid solely for the case
whereE(Yt) is assumed known. The case where an unknown trend is present in
(1.1) requires a special treatment and is the object of current research.

The paper is organized as follows. In Section 2, we develop the smooth goodness-
of-fit test in the ARMA(p, q) context of (1.1). In Section 3, we describe the data-
driven technology that allows to "fine tune" the test by choosing a good value for
its order. In Section 4, a comprehensive Monte-Carlo study is conducted for some
values of (p, q) to study the behavior of the proposed tests under the null hypoth-
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esis and compare their power to some competitors. It emerges that, under the null
hypothesis, one of our data driven smooth tests holds its level over most of the
parameter space and, under the alternatives studied, is in general more powerful
than other methods. It can thus be recommended as a good tool for problem (1.2).
An example concludes the paper.
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2 Smooth test of normality in the ARMA context

Let Φ(.) denote the cumulative distribution function of theN(0, 1) distribution
with densityφ(.) and consider the random variablesUt = 2Φ(εt/σ) − 1 with
densityg(.). UnderH0 of (1.2), theUt’s arei.i.d.U[-1, 1] random variables so that
(1.2) reduces to testing whetherg(u) = 1/2 on [-1, 1]. Theεt’s are unobserved
and the test must be based on residuals. Since the process(Yt, t ∈ Z) is invertible,
we have

εt = −
∞∑

r=0

δrYt−r (2.1)

where theδr’s are functions ofθ andϕ (see (A.2), (A.3) of Appendix A). Let̂δr
be the gaussian maximum likelihood estimator (m.l.e.) of δr under (1.2), obtained
by plugging in them.l.e. θ̂ andϕ̂ underH0. We define the residuals of the fitted
ARMA model by

ε̂t = −
∞∑

r=0

δ̂rYt−r. (2.2)

Of course, some scheme must be used in practice to compute these residuals, for
example by takingYt = 0 if t < 1. Note that these residuals are not the only
ones that can be defined for ARMA models (see Brockwell & Davis (1991), Sec-
tion 9.4 for an alternative) but the definition above is convenient for the following
derivation. Consider̂Ut = 2Φ(ε̂t/σ̂) − 1 , t = 1, ..., T , which approximate the
Ut’s but have a complicated covariance structure. The problem is to construct, in
spite of this, a valid goodness-of-fit test of (1.2).

To this end, let{Lk(.), k ≥ 0} be the normalized (over [-1, 1]) Legendre polyno-
mials (Sansone (1959)) withL0(.) ≡ 1 satisfying the orthonormality relation

1

2

∫ 1

−1

Lk(x)Lj(x)dx = 1 if k = j and0 otherwise. (2.3)

For some integerK ≥ 1, consider the density defined on [-1, 1] by

gK(u; ω) = c(ω) exp

{
K∑

k=1

ωkLk(u)

}
(2.4)

wherec(ω) is a normalizing constant such thatc(0) = 1/2. In the classical
smooth test paradigm, (2.4) is referred to as theK-th order alternative to the
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U[-1, 1] with gK(.; 0) being the U[-1, 1] density. Thus, ifg(u) can be closely
approximated by (2.4), problem (1.2) reduces to that of testingH0: ω = 0. For
this, we use the following route that leads essentially to Rao’s score test. Let
Lt = (L1(Ut), ..., LK(Ut))

T, L̂t = (L1(Ût), ..., LK(Ût))
T and

L̂ = T−1

T∑
t=1

L̂t. (2.5)

UnderH0, Lt has mean0 and covariance matrixIK , theK-th order identity
matrix. Under alternative (2.4), these moments will differ and (2.5) can be used to
capture departures from the U[-1, 1] in the "direction" ofgK(.; ω). This suggests

as a test statistic a quadratic form in̂L . In order to complete the test strategy,
we need the null asymptotic distribution of (2.5). This is given in the following
theorem.

Theoreme 2.1.Consider the causal and invertible ARMA(p, q) process of (1.1)
where we assume in addition that the polynomials1 − ϕ1z − ... − ϕpz

p and1 +
θ1z + ...+ θqz

q have no common zeroes. UnderH0, we have

√
T L̂

L−→ NK

(
0, IK −

1

2
bKbTK

)
(2.6)

wherebK = (b1, ..., bK)T, with bk =
∫

R Lk(2Φ(x) − 1)x2φ(x)dx . Hence, under
H0, the smooth test statistic

RK = T L̂
T
(

IK −
1

2
bKbTK

)−1

L̂
L−→ χ2

K .

Proof. We present here the general outline of the argument. All details are con-
fined to the appendices. Let

Iβ = V ar

[
∂

∂β
Log

(
1

σ
φ
(εt
σ

))]
be Fisher’s information matrix forβ. From standard results (see Gouriéroux &
Monfort (1995), p.325), we have,

√
T
(
β̂ − β

)
=

1√
T

T∑
t=1

I−1
β

∂

∂β

[
Log

(
1

σ
φ
(εt
σ

))]
+ oP (1).
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Since
(
β̂ − β

)
= OP (T−1/2), a Taylor expansion yields

√
T L̂ =

1√
T

T∑
t=1

Lt +

[
1

T

T∑
t=1

∂

∂β
Lt

]
√
T
(
β̂ − β

)
+ oP (1). (2.7)

The first term on the right hand side of (2.7) converges to aNK(0, IK). Moreover,
it is shown in Appendix A that[

1

T

T∑
t=1

∂

∂β
Lt

]
P−→
[

0
K×(p+q)

,− 1

σ
bK

]
= −JK . (2.8)

Hence,

√
T L̂ =

1√
T

T∑
t=1

Lt −
1√
T
JKI

−1
β

T∑
t=1

∂

∂β

[
Log

(
1

σ
φ
(εt
σ

))]
+ oP (1)

=
1√
T

T∑
t=1

BV t + oP (1)

whereB = (IK ,−JKI−1
β ) and

V t =

(
LT

t ,
∂

∂βT

[
Log

(
1

σ
φ
(εt
σ

))])T

.

Now, it is shown in Appendix B that, underH0, E(V t) = 0 andV ar(BV t) =
IK − bKbTK/2 . The central limit theorem yields (2.6).

It is possible to writeRK in a form that makes it easier to use. A Cholesky
decomposition of

(
IK − bKbTK/2

)
yields

(
IK − bKbTK/2

)−1
= PP T with P =

(pij), an upper triangular matrix. Some algebra gives

pij =


0 if i > j√

2−
∑i−1

k=1 b2k
2−

∑i
k=1 b2k

if i = j

bibj√
(2−

∑j−1
k=1 b2k)(2−

∑j
k=1 b2k)

if j > i

.

Thus

RK =
K∑

k=1

(
1√
T

T∑
t=1

L∗k(Ût)

)2
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where

L∗k(Ût) =
k∑

l=1

plkLl(Ût). (2.9)

Numerical integration gives(b2, b4, ..., b10) = (1.23281, 0.521125, 0.304514, 0.205589, 0.150771)
with bk = 0 if k is odd. This yields the first ten "modified" Legendre polynomials

L∗1(u) = 1.73u,
L∗2(u) = 6.85u2 − 2.28,
L∗3(u) = 6.61u3 − 3.97u,
L∗4(u) = 19.91u4 − 10.26u2 − 0.56,
L∗5(u) = 26.12u5 − 29.02u3 + 6.22u,
L∗6(u) = 69.84u6 − 81.84u4 + 28.36u2 − 3.06,
L∗7(u) = 103.84u7 − 167.75u5 + 76.25u3 − 8.47u,
L∗8(u) = 260.07u8 − 450.18u6 + 247.18u4 − 38.73u2 − 1.11,
L∗9(u) = 413.92u9 − 876.55u7 + 613.58u5 − 157.33u3 + 10.73u,
L∗10(u) = 994.51u10 − 2250.43u8 + 1782.83u6 − 569.92u4 + 67.54u2 − 3.58.

Remark 2.1. The test statistic derived here differs from the standard smooth test
statistic for normality in thei.i.d. case given, for example, in Thomas & Pierce
(1979). However, it turns out that if one computes, using their approach, the
smooth test statistic for i.i.d. observations when the mean is known (case 2 in the
terminology of D’Agostino & Stephens (1986), which corresponds, in the present
context, to an ARMA(0, 0)), the resulting statistic coincides with ourRK . Thus,
we can slightly extend the finding of Pierce & Gray (1985) and state that nei-
ther the estimation ofϕ andθ nor the dependence of theYt’s has any asymptotic
impact on a smooth test of (1.2) in the present ARMA context. Of course, in pre-
asymptotic situations these elements and the complexity of the model will affect
the null distribution ofRK . This will be further explored in the simulation study
of Section 4.

Remark 2.2. Each termT−1
(∑T

t=1 L
∗
k(Ût)

)2

is a component of the test statis-

tic and has an asymptoticχ2
1 distribution underH0. When the null hypothesis

is rejected, some of these components will be large. The simple structure of the
first few polynomials in (2.9) allows some interpretation and helps in understand-
ing what aspects of the normal distribution are not supported by the data. For
example, the first component detects departure from symmetry underH0 in the

9



"direction" of asymmetry. This diagnostic analysis must be undertaken with some
care however; see Henze (1997) for details.

Remark 2.3. The above methodology can in principle be applied to test other
distribution than the normal. For location-scale densities, one needs to replace
the normal distribution in the definition ofUt and follow the above derivation
using the new null density. In the end, the structure ofRK will be similar to
what is obtained above but the modified Legendre polynomials will change. For
distributions with a sahpe parameter, the statistic will be more complex since the
coefficients of these modified polynomials will in general depend on this unknown
shape parameter that must be estimated.
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3 Choosing the orderK of the alternative

Before applying the test strategy of Section 2, one must choose a value forK.
Ideally, this choice should be made so that members of the embedding family
gK(.; ω) of (2.4) provide a good approximation to any plausible densityg(.) of Ut

under the alternative. IfK is taken too small, this approximation may be crude
and the test loses power. IfK is taken too large, power dilution can occur since
gK(.; ω) encompasses unnecessary "directions".

In most practical cases, the user has only, at best, a qualitative idea of the plausible
alternatives and no specific value ofK emerges naturally. In thei.i.d. case, a first
school of thoughts argues that, as a rule of thumb, one can use a trade-off value of
K between 2 and 4.

Recently, Ledwina (1994) and Kallenberg & Ledwina (1997a,b) have proposed
and explored fori.i.d. data a method to choose adaptively a value forK. At the
first step, Schwarz (1978)´s criterion is used to zero in on the valueK̂ that seems
best in view of the data at hand. The smooth test strategy is then applied using the
statisticRK̂ . Extensive simulations have shown that, even for small sample sizes,
this so-called "data-driven smooth test" can yield power close to what would be
obtained if one knew the true form of the alternative and had chosen the best value
of K accordingly.

Presently, this approach has been investigated for thei.i.d. case only. We now
present an extension to the ARMA context. Choose two integers1 ≤ d ≤ D and
consider the set of statistics(Rd, ...,RD). We seek a rule that will select a good
RK in this set. Write

K̂ = min

[
Argmax

d≤s≤D
{Rs − sLog(T )}

]
(3.1)

and denoteRK̂(d) , the test statisticRK̂ selected by (3.1) in(Rd, ...,RD).

Theoreme 3.1.UnderH0, K̂ −→ d in probability and thus,RK̂(d) is asymptoti-
cally χ2

d .

Proof. Setek = (k−d)LogT . Fork ≥ d, P (K̂ = k) ≤ P (Rk > ek). Now, since
eachRk is asymptoticallyχ2

k underH0, asT increases

P (Rk > ek) −→ 0
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when k > d. It follows thatP (K̂ = d) = 1− P (K̂ ≥ d+ 1) −→ 1.

For finite sample sizes, the asymptotic null distribution of Theorem 3.1 may
not provide a good approximation to that ofRK̂(d) since there is a positive prob-
ability that K̂ ≥ d + 1. A simple correction has been developed by Kallenberg
& Ledwina (1997a) whend = 1 (i.i.d. data). Because of the asymptotic indepen-
dence between the components ofRk, this correction can easily be extended to
d > 1 and to the present ARMA context. Indeed,

P (RK̂(d) ≤ x) = P (Rd ≤ x, K̂ = d)+P (Rd+1 ≤ x, K̂ = d+1)+P (RK̂(d) ≤ x, K̂ > d+1).

Since underH0, P (K̂ > d + 1) is small if T is large, we are brought to neglect
the last term and, for the remaining terms, to consider the caseD = d+ 1. Then,
K̂ = d when (

T−1/2

T∑
t=1

L∗d+1(Ût)

)2

≤ Log(T ). (3.2)

This left-hand side of (3.2) is asymptotically independent ofRd so we get

P (Rd ≤ x, K̂ = d) ≈ P (χ2
d ≤ x)P (χ2

1 ≤ Log(T )).

MoreoverK̂ = d+ 1 when inequality in (3.2) is reversed. Thus

P (Rd+1 ≤ x, K̂ = d+ 1) ≈
∫ x

Log(T )

P (χ2
d < x− z)

1√
2πz

e−z/2dz.

This leads to the following approximation, which can be solved forx by numerical
integration

P (RK̂(d) ≤ x) ≈ P (χ2
d ≤ x)P (χ2

1 ≤ Log(T ))+

∫ x

Log(T )

P (χ2
d < x−z) 1√

2πz
e−z/2dz.

(3.3)
Some quantiles corrected through (3.3) are listed in Table 3.1.
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T a = 0.10 a = 0.05 a = 0.01
d = 1 50 3.692 5.410 8.805

100 3.275 5.201 8.703
200 3.057 4.751 8.590

d = 2 50 5.466 7.137 10.807
100 5.262 6.972 10.684
200 5.043 6.796 10.558

Table 3.1: Some quantiles obtained from approximation (3.3)

One may get the feeling that this data driven approach replaces the problem
of selectingK with that of selectingd andD. To answer this, Kallenberg & Led-
wina (1997a,b) have studied a version of the above procedure whereD is allowed
to increase withT . In thei.i.d. case, they obtain rates connecting these quantities.
These rates are theoretically interesting but do not help in practice in selecting a
value forD. To obtain more insight, they have conducted extensive simulations.
It turns out that the power levels off rapidly asD increases and there is little to be
gained by choosingD above a certain threshold in the area of 10. As for the choice
of d, again Kallenberg & Ledwina (1997a) briefly discuss this problem where it
emerges that in their contextd = 1 or 2 appears reasonable. In the simulation
study of the next section we use both these values ofd and takeD = 10.

In closing this section, note that, by plottinggK̂(.; ω̂) where ω̂ is an estimate
of ω, one can get an idea of the true shape of the density when the null hypothesis
has been rejected. This can be helpful in finding a more appropriate distribution
for the innovations.
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4 Simulation Results

To get an idea of the behavior of our test statistics as compared to some competi-
tors, a simulation study was conducted.

The general framework of the study is as follows. Samples{Yt, t = 1, ..., T}
from various ARMA(p, q) models were generated with the innovations arising,
in the first part of the simulation, from the normal distribution and, in the second
part, from various alternatives. For each of these samples, we estimated the pa-
rameters of the model and computed some test statistics. This allowed to obtain
approximations to their actual level and power. All programs are written in For-
tran 77 and all subroutines listed below are from the Numerical Algorithms Group
(NAG) MARK 16 Fortran library.

4.1 Levels

The first part of the simulation study was designed to see if the critical values
obtained from the asymptoticχ2 or by (3.3) can be relied upon in finite samples.
For this, we have takenT = 50, 100 and 200 and restricted attention to the mod-
els ARMA(0, 2) (= MA(2)), ARMA(2, 0) (=AR(2)), ARMA(1, 2), ARMA(2, 1)
and ARMA(2, 2). To generate ARMA(p, q) samples with Gaussian innovations,
we used subroutine G05EGF to obtain initial values corresponding to a stationary
reference vector. Subroutine G05EWF was then used to generate theT successive
terms of the sample. These samples were submitted to subroutine G13DCF that
returns estimates of the parameters of the model as well as residuals. The defini-
tion of these residuals, which is given at equation (9.4.1) in Brockett et al. (1988),
differs from (2.2) but their numerical values are almost identical. These residuals
were then injected in the various test statistics. The actual levels of the tests were
computed for nominal levelsα = 0.10 and 0.05. In all our simulations, we used
subroutine G05CBF to set the seeds used by the random number generators to a
repeatable initial value. The values of these seeds are available upon request.

Regarding the values of the parameterβ, notice first that our test statistics are
theoretically invariant to the choice ofσ and any convenient value can be taken:
we have chosenσ = 1. Numerically, this invariance holds only approximately
because of the stopping rule in the maximization algorithm. On the other hand,
the finite distribution of our test statistics depends on the values of the parameters
θ andϕ. To explore this effect, we have proceeded as follows. First, causality re-
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quires that, ifp = 1,ϕ1 ∈]−1, 1[ while if p = 2, ϕ must lay in the triangular region
4ϕ = {(ϕ1, ϕ2)|ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1, |ϕ2| < 1} (Brockett et al. (1988), p.
110, ex.3.2). Similarly, invertibility implies that ifq = 1, thenθ1 ∈]− 1, 1[ while
if q = 2, θ must lay in5θ = {(−θ1,−θ2)|θ1 + θ2 < 1, θ2− θ1 < 1 and|θ2| < 1}.
In addition, the polynomials1−ϕ1z whenp = 1 and1−ϕ1z−ϕ2z

2 whenp = 2
must not have any common zeroes with1 + θ1z when q = 1 and1 + θ1z + θ2z

2

when q = 2.

For the AR(2) model, we have taken the values ofϕ in the following grid of
64 points{(−2.0 + 0.25j,−0.9 + 0.25k) ∈ 4ϕ|j, k ≥ 0}. A similar grid was
used for the MA(2) model. This permits an exploration of the stability of the tests,
with respect to maintaining the proper critical level, over a good part of the pa-
rameter space. Note that some points of these grids are close to the boundary of
stationarity but none is extremely close.

For the ARMA(1, 2), the grid over5θ was reduced to the points{(−2.0 +
0.40j,−0.9 + 0.40k) ∈ 5θ|j, k ≥ 0} while ϕ1 = −0.9 + 0.2j, j = 0, ..., 9. This
gives a set of 250 points on the parameter space of(ϕ1,θ). For the ARMA(2, 1)
model, the same was done but withϕ andθ1 instead. Finally, for the ARMA (2,
2) model, points(ϕ,θ) satisfying the "no common zeroes" condition stated above
were taken in{(−1.95 + 0.45j,−0.85 + 0.45k) ∈ 4ϕ|j, k ≥ 0} ∪ {−(−1.95 +
0.45j,−0.95 + 0.45k) ∈ 5θ|j, k ≥ 0}. This yields 294(ϕ,θ) parameter points.

For each of these parameter points, 10000 samples of sizeT were generated as
described above. The estimation ofθ andϕ can be a difficult non-linear prob-
lem. Subroutine G13DCF has an output parameter (IFAIL) that indicates whether
a problem in obtaining them.l.e. has been encountered. In our simulations, the
most common problem flagged by this parameter was IFAIL = 5 and to a far
lesser degree IFAIL = 6 and IFAIL = 8. IFAIL = 5 means that the conditions
for a solution of the maximization process had not all been met but a point at
which the log-likelihood takes a larger value could not be found. This indicates
that the algorithm has probably found the solution, as far as the accuracy of the
machine permits. IFAIL = 6 and IFAIL = 8 appear when the solution is so close
to the boundary of stationarity and invertibility that there are some problems in
evaluating the Hessian matrix. In this case, the attained solution is as close as
computationally feasible to them.l.e.. In view of the fact that such problems arise
from the finite accuracy of the computer, we decided to keep all generated samples
in the simulation. However, we checked that applying our test statistics either to
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the samples for which no computational problem occurred or to all samples pro-
duced virtually identical results. Moreover, close inspection confirmed that the
samples where a flag appeared lead to estimates of parameters and residuals not
discernably different from those obtained when no problem were reported.

To summarize the results of this part of the simulation, the following approach
was adopted. A 95% confidence interval for the true level of our tests when the
number of replication is 10000 andα = 0.10 (resp. 0.05), has length approx-
imately 0.012 (resp. 0.008). This suggests thatp-values in the interval (0.094,
0.106) do not differ markedly from the nominal 10%. Similarly, forα = 0.05,
95% of thep-values are expected in the interval (0.046, 0.054). Thus the range
of possiblep-values was divided in 5 sub-intervals. Forα = 10%, these are
I1 = (0, 0.085), I2 = [0.085, 0.094), I3 = [0.094, 0.106), I4 = [0.106, 0.115)
and I5 = [0.115, 1]. For α = 0.05, I1 = (0, 0.035), I2 = [0.035, 0.046),
I3 = [0.046, 0.054), I4 = [0.054, 0.065) andI5 = [0.065, 1]. For each model,
the percentage ofp-values falling into each interval was recorded. Table 4.1 re-
ports the results for statisticsR3 andRK̂(2) which, as discussed in Section 3, are
representative of the two schools of thought for the choice ofK. Note that the
sum of each line may differ from 100% due to rounding errors.

Insert Table 4.1.a) about here

Insert Table 4.1.b) about here

From Table 4.1a), we can observe forR3 that the actual levels are concentrated
on I1, I2 andI3 and the levels of this test rarely overestimate the intended level.
The mode of the distribution is located onI2 for T = 50 and is shifted onI3 as
T increases. This lead, at worst, to slightly conservative tests. To appreciate this,
the last column of Table 4.1 gives the smallestp-value recorded over the param-
eter points. ForRK̂(2) (Table 4.1.b), the bulk of the distribution is concentrated
on I2, I3 andI4 with, in all cases, a mode centered onI3. For this statistic, the
minimal p-values are also closer to the nominal level (no maximalp-value was
very far from the upper bound ofI4). It thus appears that correction (3.3) works
adequately, at least for the models and sample sizes considered here. Not surpris-
ingly, for both statistics the dispersion aboutI3 decreases asT increases. Overall,
the statistic that yields the best results in this part of the simulation isRK̂(2).

We also investigated what areas of the parameter spaces gavep-values inI1. This
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is important in practice since, if a sample yields estimates in such an area, the
test of (1.2) might be conservative and some care must be taken in interpreting
the results. Intuitively, one can expect these points to be near the boundary of
the parameter space. However, the pattern that emerges, which is very similar for
bothR3, andRK̂(2), is more precise. For AR(2) models, these points correspond
mainly to positive(ϕ1, ϕ2) close to the right boundary of4ϕ and, to a lesser
degree, to those with positiveϕ1 and negativeϕ2 but again close to that bound-
ary. For MA(2) models, the situation is reversed, which is not surprising since
5θ = −4ϕ. For ARMA(2, 1), the points giving smallp-values correspond to
positive(ϕ1, ϕ2) combined with values ofθ1 close to -1. Again, for ARMA(1, 2)
the situation is reversed and smallp-values are associated with negative values of
(θ1, θ2) with a value ofϕ1 close to 1. Finally, for the ARMA(2, 2), the points that
yield p-values inI1 are mainly those with positive(ϕ1, ϕ2) and negative(θ1, θ2).
AsT increases, these points are associated withp-values that are still smaller than
nominal, but tend to fall inI2 and eventually inI3.

We have also investigated the null behavior of some other tests that have been
recommended in the time series literature to check assumption (1.2). We first con-
sidered the Anderson-Darling (AD) test Pierce & Gray (1985) for case 2 (known
mean) used in conjunction with the quantiles given for this case in D’Agostino
& Stephens (1986) p. 122. A table similar to 4.1 was obtained, but we report
here only the part about the ARMA(1,2) model (see Table 4.2). Our simulations
show that, for largeT this yields valid critical levels under the null hypothesis.
This supports the conjecture that Pierce’s theorem could be extended to ARMA
models. We also studied a variant of the Shapiro-Wilk test known as the Weisberg
& Bingham (1975) (WB) test. This variant was chosen because the coefficients
in the test statistic are easily obtained for any sample size by Bloom’s approxima-
tion (see D’Agostino & Stephens (1986) p. 400, eq. 9.67) and leads, in thei.i.d.
case, to powers similar to that of the Shapiro-Wilk test. In order to adapt this test
statistic to our time series context with known mean, the denominator of equation
(9.68) of D’Agostino & Stephens (1986) was replaced byT σ̂2 , whereσ̂2 is the
estimate ofσ2 returned by subroutine G13DCF. Up to the numerical accuracy of
procedure G13DCF, this corresponds to the sum of square of the residuals (see
Brockwell & Davis (1991), p.257 eq. 8.7.5). The quantiles for this test (or any
variant of the Shapiro-Wilk test) are unknown in the present context. It turns out
that our simulations show that they can be approximated by Monte Carlo using
i.i.d. data, although we found no theoretical results supporting this. Thus, we
have simulated 100000 samples from an ARMA(0,0) model and computed the
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empirical quantiles. ForT = 50, 100 and 200, we got, forα = 10%, 0.920, 0.958
and 0.978 while for 5%, we found 0.899, 0.947 and 0.973. A third approach, the
Jarque & Bera (1987) eq. (5) (JB) test was also investigated. Although developed
in the linear regression context, this test has been sometimes recommended in the
time series literature (see Cromwell et al. (1994); Frances (1998)). A summary of
the results for these tests in the ARMA(1, 2) model is given in Table 4.2. Also
appearing in this table are the levels of the test based onRK̂(1).

Overall, the best tests as regards levels areRK̂(2) followed byRK̂(1) and then
R3, AD andWB. In general, the AD test yields distributions ofp-values in be-
tween those ofR3 andRK̂(1). More troublesome is the fact that this test may
underestimate much more the intended level, as can be seen by the minimalp-
values (last column of Table 4.2) that were encountered on the grid of parameter
points. This indicates that the levels of theAD test are much less stable. TheWB
test exhibits a similar behavior. On the other hand, there appears to be a problem
with theJB test as the 10% quantile, obtained from the asymptoticχ2

2 approxi-
mation, is vastly in error and produces levels that are about half of the intended.
The 5% quantile yields better results but they still underestimate the intended level
at T = 200. Further simulations with this test show that levels improve slightly
whenT = 500, indicating that the convergence to the asymptoticχ2

2 is very slow.
TheJB statistic is a version of the Bowman and Shenton test statistic (see Lutke-
pohl & Schneider (1989)) based on the empirical skewness and kurtosis of the
residuals. Fori.i.d. data, this statistic has a notoriously slow convergence toward
its asymptotic distribution and for finite samples, corrected quantiles in the man-
ner of Doornik & Hansen (1994) are required. The simulation results in Lutkepohl
& Schneider (1989) tend to show that this is also the case for AR(1) and AR(2)
models. Since the derivation of corrected quantiles in the present ARMA context
is beyond the scope of the paper, we choose not to pursue further the investigation
of theJB test.

Insert Table 4.2 about here

4.2 Power

The second part of our simulation was conducted to study the power of our tests
and allow comparison with the competitors mentioned above. For this, we re-
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stricted attention to the case where the innovations arei.i.d. and generated sam-
ples{Yt, t = 1, ..., T} according to model (1.1) from various alternatives to the
normal distribution. These alternatives were taken as the densities listed in Table
V of Kallenberg & Ledwina (1997b) as defined on p.113 and centered so that their
expectation is zero. They comprise a large range of departure from the normal dis-
tribution both in skewness, kurtosis and shape.

Generating ARMA(p, q) samples{Yt, t = 1, ..., T} according to model (1.1)
with non-Gaussian innovations needs some care and, for this task, we used the
random shock method described by Burn (1987). More precisely, we used his
algorithms IA 1 withm = 50 and SA 1 with an induction period ofM = 200.
Again, the parameters of the models were estimated by subroutine G13DCF. To
allow a proper comparison of the various tests, we used for each model a set
of parameters for which thep-values computed in the first part of the simula-
tion were inI3 for all tests. More precisely we took: ARMA(2, 1):(ϕ, θ1) =
(−0.8,−0.1, 0.7), ARMA(1, 2): (ϕ1,θ) = (−0.7, 0.4, 0.5) and ARMA(2, 2):
(ϕ,θ) = (−1.05,−0.4, 0.15, 0.85). Also we tookT = 50 and 100. For each com-
bination of sample size, model and alternative distribution, we generated 10000
samples and performed the various tests. From there, empirical powers were com-
puted.

Table 4.3 presents these empirical powers, withα = 10%, for the testsR3,RK̂(2),
AD andWB. Similar results were obtained forα = 5%. The testsR3 andRK̂(2)
have a similar behavior with, overall,RK̂(2) being slightly better. Both these tests
generally dominate the others. TheAD approach often yields a power that is much
lower than these two tests whereasWB generally lies somewhere in between. For
i.i.d. data, theWB test, as a variant of the Shapiro-Wilk test, is considered among
the best omnibus tests of normality. In ARMA situations, this does not seem to
hold at the same degree. As an explanation, one can note that power decreases
with the complexity of the model and that all powers reported in Table 4.3 are
much lower than what is obtained fromi.i.d. data (e.g. the ARMA(0,0) model).
For bothR3 andRK̂(2), the average loss in percentage points of power (p.p.p.)
is 6.6 for the ARMA(2,1), 9.6 for the ARMA(1,2) and 13.2 for the ARMA(2,2).
With such differences, it is perhaps not surprising that the behavior observed in
thei.i.d. case differs from what has been observed in the present simulation.

We have also computed the power of the test based onRK̂(1). The tabulated re-
sults are not presented here for brevity. We found that, forT = 50 and symmetric
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alternatives, the test based onRK̂(1) yields slightly better power thatRK̂(2) with
an average increase of about 2.6p.p.p.. For asymmetric alternatives, the situation
is reversed and usingRK̂(2) increases the power by 4.1p.p.p. on the average.
ForT = 100, this small advantage vanishes,RK̂(2) being more powerful almost
everywhere, with an average gain in power of about 1p.p.p. for symmetric alter-
natives and 5.6 for asymmetric ones. This behavior ofRK̂(1) is explained by the
fact that for these alternatives, as with many others,R1 yields little, sometimes
trivial, power. On the other hand, power as a function ofK usually levels off at
R3, and not infrequently atR2. This empirical observation is behind the rule of
thumb stated in Section 3. Thus to have good power, the selection rule withd = 1
must giveK̂ ≥ 3, which may be difficult. By comparison, starting atd = 2 gives
a better chance that̂K ≥ 3 when necessary without introducing power dilution
when the best value ofK is 2.

In view of the results of these simulations, we can recommend the use ofRK̂(2)
for testing (1.2) whenE(Yt) = 0. The levels are stable over most of the parameter
points and close to nominal for moderate samples. Moreover, the obtained power
is generally better than that of other tests that have been recommended in the time
series literature. Finally, the test is very easy to apply: a FORTRAN program is
available from the authors.

Insert Table 4.3.a) about here

Insert Table 4.3.b) about here

Insert Table 4.3.c) about here
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5 An example

In the course of a study to forecast the amount of daily gas required, Shea (1987)
has studied a bivariate time series ofT = 366 points. The first component of this
time series pertains to differences in daily temperature between successive days
(5τt) and he found, after an iteration process of fitting and diagnostic checking,
that the following MA(4) model could be entertained:

5τt = εt + 0.07εt−1 − 0.30εt−2 − 0.15εt−3 − 0.20εt−4.

The residual variance is 2.475. All these parameters are obtained by maximizing
the Gaussian likelihood so that problem (1.2) is of some importance. Shea does
not discuss the normality of the innovations in assessing the fit of this model but
rather goes on to find a good model for the bivariate series based on an analysis of
the residual’s cross correlation matrix.

An application of the methods of the paper yieldsR3 = 22.85, with a p-value
of 0.00004 whileRK̂(2) = 22.77 (K̂ = 2) yielding ap-value of 0.00003 ac-
cording to (3.3). Thus, both tests strongly reject the null hypothesis (1.2). A
complementary analysis helps in understanding what aspect of this null distribu-
tion is not supported by the data. We find thatR1 = 0.15 (p = 0.69) with a
skewness coefficient of 0.13. Thus there is no reason to suspect an asymmetrical
distribution for the innovations. On the other hand, we can notice that 9.3% of
the absolute residuals are greater than 2.5 and the kurtosis is 4.33. Thus, if the
model entertained above is correct, the conclusion that emerges from the present
analysis is that the5τt series could have been generated from innovations with a
symmetric distribution having fatter tails than the Gaussian.
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Appendix A

We show that, for the Legendre polynomialLk(.) satisfying (2.3), we have under
H0,

1

T

T∑
t=1

∂

∂β
Lk(Ut)

P−→

[
0

(p+q)×1

− 1
σ
bk

]
so that the convergence (2.8) holds. Note that it suffices to show

1

T

T∑
t=1

∂

∂σ
Lk(Ut)

P−→ E

[
∂

∂σ
Lk(Ut)

]
= − 1

σ
bk, (A.1.a)

1

T

T∑
t=1

∂

∂ϕ1

Lk(Ut)
P−→ E

[
∂

∂ϕ1

Lk(Ut)

]
= 0, (A.1.b)

1

T

T∑
t=1

∂

∂θ1

Lk(Ut)
P−→ E

[
∂

∂θ1

Lk(Ut)

]
= 0. (A.1.c)

If eitherp or q = 0, some of the convergences above are obvious. Thus, to avoid
trivialities, we assume in the sequel thatp andq > 0. First,

∂

∂σ
Lk(Ut) = −2εt

σ2
φ
(εt
σ

)
L′k(x)|x=2Φ( εt

σ )−1 = − εt
σ2
w
(εt
σ

)
say.

The law of large numbers yields (A.1.a). For (A.1.b), define forr ≥ 0,

Br−1 =
∂

∂ϕ1

δr(θ,ϕ),

where, settingϕ0 = −1, γ0 = θ0 = 1, we have

δr(θ,ϕ) = δr =

min(r,p)∑
i=0

ϕiγr−i r ≥ 0 (A.2)

and

γr = −
min(r,q)∑

i=1

γr−iθi r ≥ 1. (A.3)

ObviouslyBr−1 = γr−1 whenr ≥ 1. Forr ≥ q, from Brockwell & Davis (1991),
p.107,

γr =

j∑
i=1

ri−1∑
n=0

cinr
nαr

i
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for some constantscin and where theαi’s are thej distinct roots of1+ θ1z+ ...+
θqz

q andri is the multiplicity ofαi, i = 1, ..., j. Thus, whenr ≥ q + 1,

Br−1 =

j∑
i=1

ri−1∑
n=0

cin(r − 1)nα−r+1
i . (A.4)

It is well known that if(Xt, t ∈ Z) is a weak stationary process with autocovari-

ance functionCov(Xt, Xt+h) that tends to 0 ash → ∞, thenXT
P−→ E(Xt).

We apply this result withXt = ∂Lk(Ut)/∂ϕ1 which are obviously identically
distributed. From (1.1) and (2.1), we have

Xt =
1

σ
w
(εt
σ

) ∂

∂ϕ1
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w
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σ

)(
Yt−1 −
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∂
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δr

)
θTY

(q)
t−1−r

)
.

(A.5)
HenceE(Xt) = 0. Moreover,V ar(Xt) < ∞ as shown in Appendix C and,
as shown in Appendix D,Cov(Xt, Xt+h) depends onh and not ont. Thus
(Xt, t ∈ Z) is stationary. We now show thatCov(Xt, Xt+h) → 0 ash increases.

From (A.5), we get that, forh large enough,|Cov(Xt, Xt+h)| = |d1|E|w(εt+h/σ)|/σ,
where
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(A.6)
But, |d1| ≤ d2 +

∑q
j=1 |θj|(d3j + d4j) +

∑q
i=1

∑q
j=1 |θiθj|d5ij where
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It can be shown thatd2, d3j, d4j andd5ij → 0 whenh→∞. Proof ford4j, which
is typical, is sketched in Appendix E. This yields (A.1.b).
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As for (A.1.c), letAr = ∂
∂θ1
δr(θ,ϕ). From (A.2), we have for allr ≥ p,

Ar =

p∑
l=0

ϕl
∂

∂θ1

γr−l =

p∑
l=0

ϕlγ
′
r−l.

But also, from (A.3), forr ≥ q,
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′
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′
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We thus obtain, forr ≥ q, the system{
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′
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′
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from which we find
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−
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)
for all r ≥ 2q − 1.

Grouping the terms inγ′ with the same value ofj + i = h yields, forr ≥ 2q − 1,
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Again from Brockwell & Davis (1991), p.107, we have, for some constantsdin
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24



wherea0 = θ2
0 = 1. This shows that the roots of1 + a1z + a2z

2 + ...+ a2qz
2q are

exactly the same than that of1+θ1z+θ2z
2+ ...+θqz

q, apart from the multiplicity.
Thus, we obtain

Ar =

p∑
l=0

j∑
i=1

si−1∑
n=0

din(r − l)nα
−(r−l)
i ϕl (A.7)

for all r ≥ max(2q, p). By the same argument as previously, but using expression
(A.7) ofAr instead ofBr−1, we get (A.1.c).
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Appendix B

We show thatE(V t) = 0 andV ar(BV t) = IK − bKbTK/2. In view of (1.1) and
(2.1),
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∂ϕ
Log

(
1

σ
φ
(εt
σ

))
=

εt
σ2

[
Y

(p)
t−1 −

∞∑
r=0

(
∂

∂ϕ
δr

)
θTY

(q)
t−1−r

]
,

∂

∂θ
Log

(
1

σ
φ
(εt
σ

))
=

εt
σ2

[
ε

(q)
t−1 −

∞∑
r=0

(
∂

∂θ
δr

)
θTY

(q)
t−1−r

]
and

∂

∂σ
Log

(
1

σ
φ
(εt
σ

))
=

1

σ

((εt
σ

)2

− 1

)
.

From these expressions, it follows thatE(V t) = 0 underH0. LetLt = (L1(Ut), ..., LK(Ut))
T.

We have, again underH0, V ar(Lt) = IK . Thus,
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, for some matrixC whose

exact expression will not be needed. Thus
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IK IK
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,

which yields the desired result.
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Appendix C

We show thatV ar(Xt) < ∞. Without loss of generality, setσ = 1. This will
be assumed here and throughout the following appendices. SinceYt is causal, we
can writeYt =

∑∞
j=0 ψjεt−j and from (A.5)

V ar(Xt) = E(w(εt))
2E
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∞∑
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wheredh = ψh−1 −
∑

r+j+l=h
1≤j≤q

0≤r,l≤h−1

ψlγr−1θj. We now need the following lemma.

Lemma C.1. If the ARMA process (1.1) is causal and invertible, then
∑∞
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∑∞
k=0 |γk|

∑∞
h=0 |ψh|.

Thus,
∑∞

h=1 |dh| ≤
∑∞

h=1 |ψh−1|+
∑∞

h=1

∑h
k=1 |ψh−kγk−1| =

∑∞
h=0 |ψh| (

∑∞
k=0 |γk|+ 1).

But from Brockwell & Davis (1991), p.87,
∑∞

k=0 |γk| is finite. Since under the as-
sumption of Theorem 2.1,

∑∞
j=0 |ψj| <∞ the lemma follows.

From this lemma, we conclude thatE [
∑∞

h=1 dhεt−h]
2

=
∑∞

h=1 d
2
h <∞. Since

E(w(εt))
2 = 4

∫
(L′k(2Φ(x)− 1))2φ3(x)dx <∞,

the result follows.
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Appendix D

Here, we show thatCov(Xt, Xt+h) depends onh and not ont. We have

Cov(Xt, Xt+h) = E(XtXt+h) = E

(
w(εt)

∞∑
l=1

dlεt−lw(εt+h)
∞∑
l=1

dlεt+h−l

)

= E(w(εt+h))E(w(εt))E

(
∞∑
l=1

dlεt−l

)
E

(
h−1∑
l=1

dlεt+h−l

)

+ dhE(w(εt+h))E(w(εt)εt)E

(
∞∑
l=1

dlεt−l

)

+ E(w(εt+h))E(w(εt))E

(
∞∑
l=1

dlεt−l

∞∑
l=1

dl+hεt−l

)

= dhc1E

(
∞∑
l=1

dlεt−l

)
+ E2(w(εt))E

(
∞∑
l=1

dldl+hε
2
t−l

)
say. (D.1)

The first term od (D.1) vanishes while by Lemma C.1 and Schwarz´s inequality,
the second term is finite. Thus

Cov(Xt, Xt+h) = E2(w(εt))
∞∑
l=1

dldl+h.
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Appendix E

Here we sketch the proof that the typical elementd4j of inequality (A.6) vanishes.
From Yt =

∑∞
j=0 ψjεt−j and the fact that the remainder of a convergent series

converges toward 0, we have

lim
h→∞

d4j = lim
h→∞

∞∑
r=0

|Br−1E (w(εt)Yt−1Yt+h−r−j) | ≤ lim
h→∞

|E(w(εt))|
h−j∑
r=0

∣∣∣∣∣Br−1

∞∑
a=0

ψaψa+h−j−r+1

∣∣∣∣∣
≤ |E(w(εt))| lim

h→∞

[
m−1∑
a=0

|ψa|
a+h−j−m∑

r=0

|Br−1ψa+h−j−r+1|+
h−j∑

r=a+h−j−m+1

|Br−1ψa+h−j−r+1|

+

h−j∑
r=0

|Br−1|
∞∑

a=m

|ψaψa+h−j−r+1|

]
(E.1)

wherem = max{p, q + 1} − p. Now, for the first term in the limit of (E.1), we
have, using the expression forBr−1 given in (A.4) and that ofψa+h−j−r+1 given
in Brockwell & Davis (1991) eq. (3.3.6)

a+h−j−m∑
r=q+1

|Br−1ψa+h−j−r+1| =

a+h−j−m∑
r=q+1

∣∣∣∣∣
k∑

b=1

rb−1∑
l=0

cblr
lα−r

a

k′∑
b′=1

rb′−1∑
l′=0

αb′l′(a+ h− j − r + 1)l′ξ
−(a+h−j−r+1)
b′

∣∣∣∣∣
≤

k∑
b=1

rb−1∑
l=0

k′∑
b′=1

rb′−1∑
l′=0

l′∑
d=0

(
l′

d

){
|cblαb′l′||ξ−(a+h−j+1)

b′ (a+ h− j + 1)l′−d|
a+h−j−m∑

r=q+1

rl+d|αa|−r|ξb′|r
}
.

If |ξb′| < |αa|, the last sum is finite (by D´Alambert´s rule) and, obviously, the
corresponding term in braces converges toward 0 ash → ∞. So suppose that
|αa| = 1 + ε1 < |ξb′| = 1 + ε2 with ε1 andε2 positive. We show that this term in
braces still converges towards 0. Now,∣∣∣∣∣(a+ h− j + 1)l′−d

ξ
(a+h−j+1)
b′

∣∣∣∣∣
a+h−j−m∑

r=q+1

rl+d|αa|−r|ξb′|r ≤
|a+ h− j + 1|l′−d

|ξb′|a+h−j+1

a+h−j+1∑
r=0

rl+d

(
|ξb′|
|αa|

)r

.

(E.2)
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But, for all ε > 0, there exist a positive constantC such that
a+h−j+1∑

r=0

rl+d

(
|ξb′|
|αa|

)r

≤ C

a+h−j+1∑
r=0

(
|ξb′|
|αa|

+ ε

)r

.

Hence, the left-hand side of (E.2) is bouded above by

C
|a+ h− j + 1|l′−d

|ξb′|a+h−j+1

(
|ξb′ |
|αa| + ε

)h+a−j+2

− 1

|ξb′ |
|αa| + ε− 1

≤ C ′|a+h−j+1|l′−d

( |ξb′ |
|αa| + ε

|ξb′|

)a+h−j+2

(E.3)
for someC ′ > 0. If, in (E.3), one takesε > 0 but smaller thanε1(1+ ε2)/(1+ ε1),
then

|ξb′|
|αa|

+ ε− |ξb′| =
−ε1(1 + ε2)

1 + ε1
+ ε < 0

and the right hand side of (E.3) converges to 0 ash → ∞. This shows that the
first term in the limit of (E.1) converges to 0. It follows that the second term also
converges toward 0. As for the last term in the limit, a similar argument yields

h−j∑
r=0

|Br−1|
∞∑

a=m

|ψaψa+h−j−r+1| ≤

k∑
b=1

rb−1∑
l=0

k′∑
b′=1

rb′−1∑
l′=0

l′∑
d=0

(
l′

d

) ∣∣∣∣∣αblαb′l′
βl,d,b,b′

ξ
(−j+1)
b′

∣∣∣∣∣
h−j∑
r=0

∣∣∣∣∣Br−1
(h− j − r + 1)l′−d

ξ
(h−r)
b′

∣∣∣∣∣ ,
whereβl,d,b,b′ =

∑∞
a=m a

l+d|ξbξb′|−a <∞. Now

h−j∑
r=0

∣∣∣∣∣Br−1
(h− j − r + 1)l′−d

ξ
(h−r)
b′

∣∣∣∣∣ ≤
q∑

r=0

∣∣∣∣∣Br−1
(h− j − r + 1)l′−d

ξ
(h−r)
b′

∣∣∣∣∣+
∞∑

r=q+1

∣∣∣∣∣Br−1
(h− j − r + 1)l′−d

ξ
(h−r)
b′

∣∣∣∣∣ .
The first term on the right hand side of this expression converges to 0. As for the
second term,

∞∑
r=q+1

∣∣∣Br−1ξ
−(h−r)
b′ (h− j − r + 1)l′−d

∣∣∣ ≤
l′−d∑
e=0

k∑
u=1

ru−1∑
ν=0

(
l′ − d

e

)
|cuv||ξ−h

b′ (h− j + 1)l′−d−e|
∞∑

r=q+1

rν+e

(
|ξb′|
|αu|

)r

.

By the same argument as in (E.2), this term converges to 0 ash → ∞. Thus all
terms on the right hand side of (E.1) converge to 0 so thatd4j → 0.
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Table 4.1.a: Distribution (in % of the number of parameter points) of the empirical
p-values (based on 10000 replications) for the test based onR3 among 5 sub-
intervals.

R3 Observed level Min
Model T α I1 I2 I3 I4 I5 p-level

50 5% 18.8 68.8 12.5 0 0 2.76
100 5% 1.6 50.0 48.4 0 0 3.41

MA(2) 200 5% 0 9.4 89.1 1.6 0 4.04
50 10% 23.4 53.1 23.4 0 0 6.49

(64 points) 100 10% 6.3 20.3 73.4 0 0 7.96
200 10% 0 7.8 90.6 1.6 0 8.92
50 5% 17.2 82.8 0 0 0 3.13
100 5% 3.1 45.3 51.6 0 0 3.48

AR(2) 200 5% 0 12.5 87.5 0 0 4.07
50 10% 28.1 59.4 12.5 0 0 7.09

(64 points) 100 10% 12.5 18.8 68.8 0 0 7.29
200 10% 1.6 7.8 90.6 0 0 8.41
50 5% 47.2 46.4 6.4 0 0 2.43
100 5% 8.0 71.6 20.4 0 0 2.98

ARMA(1,2) 200 5% 0.8 32.4 66.4 0.4 0 3.32
50 10% 65.6 24.0 10.4 0 0 6.20

(250 points) 100 10% 21.6 35.2 42.8 0.4 0 6.80
200 10% 4.0 19.6 75.6 0.8 0 7.42
50 5% 28.0 68.0 4.0 0 0 2.81
100 5% 5.6 54.0 38.0 2.0 0.4 3.19

ARMA(2,1) 200 5% 0 19.2 78.8 2.0 0.4 3.19
50 10% 42.2 45.2 12.4 0 0 6.71

(250 points) 100 10% 20.0 17.2 61.2 1.2 0.4 6.97
200 10% 0.8 19.2 78.8 1.2 0 8.08
50 5% 41.2 57.1 1.7 0 0 2.56
100 5% 5.1 74.1 20.8 0 0 3.09

ARMA(2,2) 200 5% 0.3 27.9 71.8 0 0 3.47
50 10% 57.8 37.4 4.8 0 0 6.24

(294 points) 100 10% 21.1 33.7 45.2 0 0 6.88
200 10% 3.1 18.0 78.6 0.3 0 7.86

34



Table 4.1.b: Distribution (in % of the number of parameter points) of the empirical
p-values (based on 10000 replications) for the test based onRK̂(2) among 5 sub-
intervals.

RK̂(2) Observed level Min
Model T α I1 I2 I3 I4 I5 p-level

50 5% 0 9.4 46.9 43.7 0 4.12
100 5% 0 14.1 68.8 17.2 0 4.17

MA(2) 200 5% 0 7.8 87.5 4.7 0 4.23
50 10% 6.3 14.1 62.5 17.2 0 7.78

(64 points) 100 10% 6.3 6.3 81.3 6.3 0 8.19
200 10% 0 6.3 89.1 4.7 0 8.83
50 5% 0 10.9 53.1 35.9 0 3.98
100 5% 0 15.6 59.4 25.0 0 4.11

AR(2) 200 5% 0 4.7 67.2 28.1 0 4.34
50 10% 9.4 15.6 70.3 4.7 0 7.91

(64 points) 100 10% 6.3 7.8 85.9 0 0 8.11
200 10% 1.6 4.7 93.8 0 0 8.43
50 5% 0 38.8 46.8 14.4 0 3.53
100 5% 0 34.8 59.2 6.0 0 3.74

ARMA(1,2) 200 5% 0 23.2 75.2 1.6 0 3.80
50 10% 24.8 31.6 35.2 8.4 0 7.06

(250 points) 100 10% 13.2 27.2 57.6 2.0 0 7.33
200 10% 4.4 18.0 76.0 1.6 0 7.61
50 5% 0 20.0 62.0 17.6 0.4 3.80
100 5% 0 26.4 50.0 22.4 1.2 3.89

ARMA(2,1) 200 5% 0 10.8 68.4 20.4 0.4 4.11
50 10% 16.0 21.2 54.4 8.4 0 7.17

(250 points) 100 10% 10.4 13.2 66.0 9.2 1.2 7.78
200 10% 1.2 13.2 81.6 4.0 0 7.91
50 5% 0 32.0 55.4 12.6 0 3.65
100 5% 0 31.0 62.9 6.1 0 3.75

ARMA(2,2) 200 5% 0 23.8 75.9 0.3 0 3.89
50 10% 21.4 30.3 47.0 1.4 0 7.14

(294 points) 100 10% 11.2 24.8 62.6 1.4 0 7.51
200 10% 2.7 16.7 80.6 0 0 7.62
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Table 4.2: Distribution (in % of the number of parameter points) of the empir-
ical p-values (based on 10000 replications) of various tests for the ARMA(1,2)
model.AD=Anderson-Darling,WB=Weisberg-Bingham,JB=Jarque-Bera and
RK̂(1) = RK̂ with d = 1.

Test Observed level Min
Model T α I1 I2 I3 I4 I5 p-level

50 5% 43.8 24.4 20.0 6.8 0 0.54
100 5% 32.0 34.8 33.2 0 0 0.92

AD 200 5% 11.6 38.0 49.6 0.8 0 1.50
50 10% 41.2 16.0 22.8 18.4 1.6 3.38
100 10% 23.2 24.4 48.0 3.6 0.8 3.93
200 10% 9.6 13.2 70.0 6.8 0.4 4.65
50 5% 61.2 23.6 15.2 0 0 0.57
100 5% 39.2 46.0 14.4 0.4 0 0.93

WB 200 5% 10.8 30.4 56.0 2.8 0 1.60
50 10% 56.8 16.4 25.6 1.2 0 2.96
100 10% 37.2 47.2 15.6 0 0 3.55
200 10% 15.6 36.0 46.0 2.4 0 4.71
50 5% 71.2 28.8 0 0 0 3.13
100 5% 0.4 99.2 0.4 0 0 3.13

JB 200 5% 0 85.2 14.4 0.4 0 4.18
50 10% 100 0 0 0 0 4.96
100 10% 100 0 0 0 0 5.88
200 10% 98.8 1.2 0 0 0 7.23
50 5% 0 58.0 27.6 14.4 0 3.52
100 5% 10.0 48.8 39.2 2.0 0 3.32

RK̂(1) 200 5% 8.4 33.6 56.4 1.6 0 3.39
50 10% 43.6 20.8 26.0 9.6 0 4.69
100 10% 26.0 24.8 48.0 1.2 0 4.81
200 10% 8.8 16.4 70.4 4.4 0 5.79
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Table 4.3.a: Empirical power (based on 10000 replications withα = 10%) of var-
ious tests for the ARMA(2,1) model with parameter(ϕ, θ1) = (−0.8,−0.1, 0.7).
The part above the line in the middle of the table corresponds to symmetric alter-
natives while those below are skewed. The distributions are ordered according to
increasing kurtosis.

T = 50 T = 100
Alternatives R3 RK̂(2) AD WB R3 RK̂(2) AD WB
SB(0;0.5) 83.19 84.76 33.12 28.93 99.72 99.84 78.34 86.81
TU(1.5) 66.94 67.96 23.18 18.27 97.50 98.14 52.60 64.10
TU(0.7) 44.47 45.64 17.02 12.42 85.82 87.84 29.28 32.21

Logistic(1) 20.74 22.75 10.70 19.02 32.94 34.29 12.78 27.41
TU(10) 94.64 96.64 78.08 83.60 99.95 99.99 99.50 99.51

SC(0.05;3) 33.65 37.38 15.46 35.98 50.79 55.71 22.44 56.32
SC(0.2;5) 96.36 96.77 74.67 92.84 99.93 99.94 98.47 99.88
SC(0.05;5) 62.33 65.22 39.56 63.63 84.25 86.38 63.31 86.95
SC(0.05;7) 74.05 76.12 58.22 75.32 92.61 93.71 82.98 93.81

SU(0;1) 75.96 76.49 39.99 66.57 95.88 95.98 73.82 91.12
SB(0.533;0.5) 91.09 89.76 52.47 59.41 99.93 99.85 95.83 99.08

SB(1;1) 53.75 56.94 26.20 32.60 96.93 87.75 51.77 80.02
LC(0.2;3) 55.58 57.79 25.79 29.72 88.79 88.81 52.04 65.87
Weibull(2) 28.10 30.72 16.86 21.25 48.17 50.48 25.24 44.12
LC(0.1;3) 44.10 43.85 21.27 35.21 75.16 72.10 40.61 67.59
χ2 (df.=10) 41.41 45.84 20.59 34.72 68.55 70.86 38.20 69.71
LC(0.05;3) 29.50 31.25 15.04 28.28 50.57 51.01 23.11 51.66
LC(0.1;5) 96.10 96.00 80.12 95.07 99.98 99.97 99.76 99.98
SU(-1;2) 37.88 38.92 19.15 33.93 61.39 59.93 30.47 57.73
χ2 (df.=4) 76.13 80.54 42.57 69.78 96.91 98.03 82.09 98.02
LC(0.05;5) 81.48 83.98 51.98 84.41 97.28 97.98 89.09 98.90
LC(0.05;7) 94.26 94.74 88.61 96.28 99.73 99.75 99.45 99.83

SU(1;1) 96.26 96.15 85.74 93.98 99.97 99.93 99.75 99.99
LN(0;1) 99.52 99.68 96.55 99.24 100 100 100 100
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Table 4.3.b: Empirical power (based on 10000 replications withα = 10%) of var-
ious tests for the ARMA(1,2) model with parameter(ϕ1,θ) = (−0.7, 0.4, 0.5).
The part above the line in the middle of the table corresponds to symmetric alter-
natives while those below are skewed. The distributions are ordered according to
increasing kurtosis.

T = 50 T = 100
Alternatives R3 RK̂(2) AD WB R3 RK̂(2) AD WB
SB(0;0.5) 73.16 74.90 27.25 22.47 99.22 99.41 73.67 82.00
TU(1.5) 57.86 59.43 19.96 15.07 96.24 97.21 47.58 57.86
TU(0.7) 38.69 39.44 15.13 11.02 82.27 84.47 26.69 28.99

Logistic(1) 18.97 20.87 9.83 17.10 31.68 33.36 12.39 26.74
TU(10) 89.57 91.62 65.83 74.31 99.82 99.88 98.78 99.06

SC(0.05;3) 32.82 36.65 14.76 34.40 50.73 55.27 21.30 55.57
SC(0.2;5) 94.21 94.72 66.49 89.12 99.96 99.95 97.87 99.80
SC(0.05;5) 61.43 63.86 37.95 61.81 83.95 86.17 62.27 86.64
SC(0.05;7) 73.00 75.22 56.46 73.89 92.51 93.77 82.78 94.00

SU(0;1) 71.73 72.44 36.03 62.20 95.46 95.73 71.46 90.44
SB(0.533;0.5) 83.62 82.09 44.34 48.17 99.68 99.51 93.60 97.81

SB(1;1) 45.94 48.41 22.54 26.18 83.93 85.13 48.60 75.28
LC(0.2;3) 49.58 52.11 22.92 26.19 86.92 86.98 48.98 62.54
Weibull(2) 25.63 28.66 15.01 18.52 47.28 48.68 23.95 42.00
LC(0.1;3) 40.62 40.54 18.12 31.38 72.04 68.76 37.70 64.91
χ2 (df.=10) 37.80 41.98 19.09 31.09 66.48 69.08 36.30 66.96
LC(0.05;3) 28.05 29.86 13.31 26.18 48.50 48.59 21.21 49.12
LC(0.1;5) 93.40 93.03 73.06 90.44 99.97 99.99 99.53 99.98
SU(-1;2) 34.38 36.29 17.25 31.12 60.23 58.90 29.04 56.47
χ2 (df.=4) 71.19 75.76 37.61 63.30 96.17 97.69 79.72 97.22
LC(0.05;5) 78.07 80.38 48.09 80.80 96.81 96.62 87.32 98.53
LC(0.05;7) 94.05 94.73 85.42 96.39 99.80 99.87 99.71 99.97

SU(1;1) 94.18 94.17 80.95 91.39 99.97 99.94 99.66 99.98
LN(0;1) 98.74 98.85 93.54 98.02 100 100 99.98 100
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Table 4.3.c: Empirical power (based on 10000 replications withα =
10%) of various tests for the ARMA(2,2) model with parameter(ϕ,θ) =
(−1.05,−0.4, 0.15, 0.85). The part above the line in the middle of the table corre-
sponds to symmetric alternatives while those below are skewed. The distributions
are ordered according to increasing kurtosis.

T = 50 T = 100
Alternatives R3 RK̂(2) AD WB R3 RK̂(2) AD WB
SB(0;0.5) 63.85 65.44 23.06 17.57 98.01 98.56 61.71 68.27
TU(1.5) 49.17 50.50 18.61 13.62 92.73 94.17 39.50 44.52
TU(0.7) 32.58 33.88 15.31 10.76 76.34 78.93 24.22 23.84

Logistic(1) 18.59 20.36 10.78 17.60 29.74 31.71 11.70 25.66
TU(10) 85.14 87.26 53.85 65.78 99.79 99.90 96.87 97.87

SC(0.05;3) 30.81 34.69 13.65 32.37 48.01 52.64 20.42 52.73
SC(0.2;5) 92.28 92.96 60.49 85.62 99.88 99.88 96.37 99.63
SC(0.05;5) 58.90 62.20 35.03 59.77 82.67 85.03 59.23 85.24
SC(0.05;7) 72.28 74.04 53.48 72.50 92.23 93.38 80.83 93.51

SU(0;1) 68.60 69.79 34.02 59.99 94.26 94.65 68.14 88.84
SB(0.533;0.5) 76.29 74.04 36.26 36.87 99.33 99.03 86.93 94.72

SB(1;1) 42.03 44.17 21.29 23.84 80.01 81.30 43.60 68.22
LC(0.2;3) 43.88 46.16 20.64 22.62 82.56 82.29 43.62 55.83
Weibull(2) 24.32 26.85 15.31 18.68 43.50 45.02 22.21 38.61
LC(0.1;3) 37.00 37.25 17.67 27.97 68.81 65.56 34.60 60.28
χ2 (df.=10) 35.04 38.91 18.69 29.66 62.38 64.41 32.68 61.22
LC(0.05;3) 25.91 28.32 13.23 24.17 45.26 45.57 20.13 46.12
LC(0.1;5) 91.04 89.90 65.32 86.06 99.95 99.87 98.96 99.89
SU(-1;2) 33.54 35.40 17.11 29.87 57.53 56.60 27.97 54.25
χ2 (df.=4) 65.96 70.30 34.83 57.70 94.37 95.97 73.18 94.99
LC(0.05;5) 75.48 77.71 43.10 77.58 96.79 97.47 84.56 98.30
LC(0.05;7) 93.44 94.24 82.38 95.88 99.90 99.95 99.62 99.97

SU(1;1) 93.14 93.17 77.94 90.14 99.93 99.87 98.80 99.81
LN(0;1) 97.89 98.16 89.78 96.83 99.99 99.99 99.90 99.99
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